Potential radiation-induced genomic instability in the Swedish hemangioma cohort and consequences for breast cancer risk

Markus Eidemüller

Las Vegas, September 2014

M. Eidemüller, E. Holmberg, P. Jacob, M. Lundell, P. Karlsson,
Breast cancer risk and possible mechanisms of radiation-induced genomic instability in the Swedish hemangioma cohort, in preparation
Outline

1. Swedish Hemangioma Cohort
2. Results from ERR model
3. Mechanistic models with Genomic Instability
4. Risk comparison
Outline

1. Swedish Hemangioma Cohort
2. Results from ERR model
3. Mechanistic models with Genomic Instability
4. Risk comparison
Swedish Hemangioma Cohort

- Between 1920-65 hemangiomas were treated by ionizing radiation in Stockholm and Gothenburg
- Hemangiomas: abnormal collection of blood vessels
 - Usually hemangiomas are situated on the skin
 - Benign condition (not cancerous), no correlation to excess risk for malignancies
 - Appear in the first weeks of life, usually disappear by age of 10
Swedish Hemangioma Cohort

- Between 1920-65 hemangiomas were treated by ionizing radiation in Stockholm and Gothenburg.
- Hemangiomas: abnormal collection of blood vessels.
- Usually hemangiomas are situated on the skin.
- Benign condition (not cancerous), no correlation to excess risk for malignancies.
- Appear in the first weeks of life, usually disappear by age of 10.
- 17700 female and 8600 male children were treated.
- 226 received Ra or X-rays (10%).

Very early treatment.
Swedish Hemangioma Cohort

- Between 1920-65 hemangiomas were treated by ionizing radiation in Stockholm and Gothenburg
- Hemangiomas: abnormal collection of blood vessels
 - Usually hemangiomas are situated on the skin
 - Benign condition (not cancerous), no correlation to excess risk for malignancies
 - Appear in the first weeks of life, usually disappear by age of 10
- 17,700 female and 8,600 male children
- ^{226}Ra or X-rays (10%)
- Very early treatment
Swedish Hemangioma Cohort

Swedish Hemangioma Cohort: Breast cancer incidence

- 17200 females
- First treatment at very young ages (< 18 months)
- 877 breast cancer cases
- Follow-up: From 1/1958 to 12/2009
- January 2010: 13952 women alive, mean (median) age is 61.1 (60.7) years
Update of dosimetry system (2013)

Changes in dosimetry system

- For Stockholm cohort, previous dose planning system did not correctly calculate doses for applicators close to breast
- Re-evaluation for these women by Candela-Juan et al, Lundell et al
- Significant reduction of breast dose (factor 2-4) of highly exposed women in the Stockholm cohort
- Breast dose range (whole cohort): 0-33 Gy, Mean dose: 0.18 Gy (previously: 0.29 Gy)

Candela-Juan et al, Dosimetric characterization of two radium sources for retrospective dosimetry studies, submitted.
M. Lundell et al, New dosimetry for hemangioma treatments with Ra-226 needles or tubes, in preparation.
Outline

1. Swedish Hemangioma Cohort
2. Results from ERR model
3. Mechanistic models with Genomic Instability
4. Risk comparison
Results from ERR model

Results

- No. of children significant baseline confounder
- Highly significant dose response
- Linear dose dependence
- About 72 of 877 breast cancer cases are radiation-induced (previous DS: 55)
- No dependence of ERR on attained age (practically flat)
Results from ERR model

Results

- Risk at central ages:

 $$\text{ERR}_{pd} = 0.48 \ \text{Gy}^{-1} (95\% \text{CI} : 0.28; 0.69)$$

 $$\text{EAR}_{pd}(50) = 10.4 \ \left(10^4 \ \text{PYRs Gy}^{-1}\right) (95\% \text{CI} : 6.1; 14.4)$$

- Previous DS: $$\text{ERR}_{pd}(50) = 0.22 \ \text{Gy}^{-1} (95\% \text{CI} : 0.13; 0.31)$$ and $$\text{EAR}_{pd}(50) = 4.8 \ \left(10^4 \ \text{PYRs Gy}^{-1}\right) (95\% \text{CI} : 2.9; 6.8)$$

- With new DS, central value of excess relative risk per dose increases substantially (about a factor of 2)

- Mean age of cases around 50 years (53 years)
Outline

1. Swedish Hemangioma Cohort
2. Results from ERR model
3. Mechanistic models with Genomic Instability
4. Risk comparison
Mechanistic models of carcinogenesis

- Initiation
 - Rate v
- Clonal Expansion
 - Division
 - Apoptosis/Differentiation
 - α, β
- Malignant Transformation
 - Rate μ
 - Cancer cell t_{lag}
- Cancer
Two-stage clonal expansion (TSCE) model

Results

- TSCE model with standard dose response gives no good fit results
- Implementing ideas from genomic instability (GI): TSCE model with lifelong effects (Eidemüller et al, Mutat Res 2009)
- TSCE model with GI significantly better than standard TSCE model (p=0.003)
- Results for radiation risk very similar to results from ERR model: similar ERR_{pd} and EAR_{pd}, no dependence of risk on attained age
Models of carcinogenesis with separate path of GI

- Healthy stem cells → initiated cells
- Initiated cells with GI → malignant cells
- GI stem cells → initiated cells with GI

Symbols:
- $\alpha_{0,Gi}$, $\alpha_{1,Gi}$, $\beta_{0,Gi}$, $\beta_{1,Gi}$
- ν_0, ν_1, $\nu_{0,GI}$, $\nu_{1,GI}$

Helmholtz Zentrum
Models of carcinogenesis with separate path of GI

Nowak et al. PNAS 2002 (APC loss, colon cancer)
Genes in breast cancer

- TCGA: 3 genes (TP53, PIK3CA and GATA3) mutated in >10% of all breast cancers
- Basal-like and HER2-enriched breast cancer: dominantly TP53
- Luminal A subtype: dominantly PIK3CA (equally TP53 and PIK3CA for luminal B subtype)
- TP53 mutations associated with adverse prognosis
- Germline variants: mainly BRCA1, BRCA2, ATM
- Substantial genetic diversity of breast cancer

Stephens et al, Nature 2012
Vogelstein et al, Science 2013
Models with separate path of genomic instability

Free parameters:

- ν_0, ν_1, β_1
- $\nu_0, GI; \nu_1, GI, \beta_1, GI$
- σ_0

Background parametrisation:

- In principle, background risk can originate from upper path (ν_0, ν_1), or from one of lower paths ($\sigma_0, \nu_0, GI; \nu_1, GI$ or $\nu_0, \sigma_1, \nu_1, GI$)
- Best support for baseline on upper path (ν_0, ν_1) (fit quality, number of parameters, biological plausibility of parameter values)
- Baseline path via σ_0 or σ_1 not supported
Models with separate path of genomic instability

Free parameters:
- ν_0, ν_1, β_1
- $\nu_0, GI, \nu_1, GI, \beta_1, GI$
- σ_0

Radiation risk:
- Here only spontaneous radiation effects, no life-long effects!
- Early exposure: only radiation on ν_0 or σ_0 is relevant
- Reference: Radiation on upper path: $\nu_0 = \nu_{0,\text{base}} + r \cdot d$
 \rightarrow TSCE model, $\Delta \text{Dev}=0$, d is dose rate (not accumulated dose)
Models with separate path of genomic instability

Free parameters:
- ν_0, ν_1, β_1
- $\nu_0, GI, \nu_1, GI, \beta_1, GI$
- σ_0

Radiation risk:
- Here only spontaneous radiation effects, no life-long effects!
- Reference: Radiation on upper path: $\nu_0 = \nu_{0,\text{base}} + r \cdot d$
 \rightarrow TSCE model, $\Delta \text{Dev}=0$, d is dose rate (not accumulated dose)
- Early exposure: only radiation on ν_0 or σ_0 is relevant

Test radiation-induced Genomic Instability:
- $\sigma_0 = \sigma_{0,\text{base}} + r \cdot d = r \cdot d$
Models with separate path of genomic instability

Radiation:

\[\sigma_0 = r \cdot d \]

Radiation-induced Genomic Instability:

Best Model:

\[\nu_{0,GI}/\nu_0 = \lambda, \quad \nu_{1,GI}/\nu_1 = 1, \quad (\beta_{1,GI} = \beta_1) \]

Result:

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta) Dev</td>
<td>-9.6</td>
<td>-9.4</td>
<td>-9.9</td>
<td>-9.9</td>
<td>-9.9</td>
</tr>
<tr>
<td>(r)</td>
<td>0.049</td>
<td>(4.9 \cdot 10^{-3})</td>
<td>(4.9 \cdot 10^{-4})</td>
<td>(4.9 \cdot 10^{-5})</td>
<td>(4.9 \cdot 10^{-6})</td>
</tr>
</tbody>
</table>

- Strongly significant model of GI at biologically plausible values!
- AIC weight compared with TSCE model without GI: > 99%
- \(\lambda \) difficult to estimate on statistical grounds alone
Models with separate path of genomic instability

Best Model:

\[\sigma_0 = r \cdot d \]

\[\nu_{0,GI} \gg \nu_0 \]

\[\nu_{1,GI} = \nu_1 \]

\[\beta_{1,GI} = \beta_1, (\alpha_{1,GI} = \alpha_1) \]

- Enhancement of \(\nu_{GI} \)
- Analogy to colon cancer: GI increases loss of heterozygosity (Nowak et al. PNAS 2002)
 for \(\nu_{0,GI}/\nu_0 \approx 10^4, r = 3.6 \cdot 10^{-5} \text{ Gy}^{-1} \)
- After exposure of 1 Gy, about 3.6 of 10^5 cells would be genomically unstable. Of 10^9 stem cells, about 3.6 \cdot 10^4 genomically unstable cells would be present.
Outline

1. Swedish Hemangioma Cohort
2. Results from ERR model
3. Mechanistic models with Genomic Instability
4. Risk comparison
Risk comparison

1σ errors

Age

ERR, TSCE-lifelong, GI, TSCE-direct

ERR_

Helmholtz Zentrum
Risk comparison

![Graph showing risk comparison between different models: ERR, TSCE-lifelong, GI, and TSCE-direct. The graph plots EAR (10^4 PYR Gy)^{-1} against age. 1σ errors are indicated by error bars.](image URL)
Comparison of breast cancer risk to LSS

Radiation-induced cases

- SHC: All breast cancer cases with age at exposure between 0-5 years (71 radiation-induced cases)
- LSS: 15 radiation-induced cases with age at exposure between 0-5 years (from best mechanistic M4 model) (Kaiser et al, Radiat Environ Biophys 2012)

<table>
<thead>
<tr>
<th></th>
<th>SHC</th>
<th>LSS (e=0-5 y)</th>
<th>LSS (e=5-10 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR(70) [Gy(^{-1})]</td>
<td>0.48</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>EAR(70) [(10(^4) PYR Gy(^{-1}))]</td>
<td>19.5</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

Risk transfer of breast cancer risk

- Results for breast cancer support preference for transfer of absolute risk between different populations
Summary mechanistic GI model

Summary

• Models with built-in radiation-induced GI strongly significant cf. standard mechanistic models
• In SHC, GI is an early event in radiation carcinogenesis
• Preferred model indicates that main effect of GI is to enhance transitions of cells with GI towards initiated cells
• Difference in time evolution of spontaneous and radiation-induced cancer (different molecular pathways?)
• Necessary to test such hypotheses with molecular biological measurements from samples of radioepidemiological cohorts
Acknowledgement

Swedish Hemangioma Cohort:
Erik Holmberg (Göteborg)
Per Karlsson (Göteborg)
Marie Lundell (Stockholm)

Helmholtz Zentrum München:
Jan Christian Kaiser
Reinhard Meckbach
Peter Jacob