Radiation biomarkers in papillary thyroid cancer

Horst Zitzelsberger
Research Unit Radiation Cytogenetics
Department of Radiation Sciences
Helmholtz Zentrum München
Post-Chernobyl papillary thyroid cancer

- **Chernobyl accident**: ~6000 radiation-associated thyroid cancer cases in young patients in Belarus, Russia and Ukraine

- **Epidemiology**: relative risk of 2-6 per Gy absorbed dose during childhood related to iodine-131 exposure (Tronko et al., JNCI 2006; Brenner et al., EHP 2011)
Post-Chernobyl papillary thyroid cancer

Post-Chernobyl PTC as a model for mechanisms in radiocarcinogenesis

- Young age at exposure and age at diagnosis → likelihood of radiation-induced cancer
- Tumour tissue bank storing exposed cases and age-matched controls
- Individual dose estimates
DoReMi and EpiRadBio

Integrating radiation biomarkers into the epidemiology and risk models of post-Chernobyl thyroid cancer

WP6, task 6.9: INT-Thyr
WP5, task 5.4:
Mathematical models to link experimental findings and epidemiological data
Radiation-associated DNA gain 7q11/CLIP2 overexpression

Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation

Hess et al., PNAS. 108(23):9595-600, 2011
Radiation-associated CLIP2 protein overexpression

Differential protein expression and standardized CLIP2 typing
CLIP2 typing in three independent cohorts

<table>
<thead>
<tr>
<th>Number of cases in</th>
<th>Genrisk-T</th>
<th>Genrisk-T-PLUS</th>
<th>UkrAm</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohorts Exposed</td>
<td>16</td>
<td>32</td>
<td>76</td>
</tr>
<tr>
<td>Non-exposed</td>
<td>17</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>

- CLIP2 marker with similar frequency in exposed cases of UkrAm and GENRISK-T

Selmansberger et al., Oncogene. 2014, in press
Dose dependency of CLIP2 marker

Dose relationship of CLIP2 in PTC (AaE < 5 years) with individual dose estimates

- **Dose-dependent** occurrence of **CLIP2 marker** in patients at young age at exposure (< 5 years)
- **Increasing frequency** of **CLIP2+ cases** in categories of **moderate and high** doses
- **Different mechanisms at low and moderate doses** compared to high doses?

Talk by Ch. Kaiser - Session F
INT-Thyr: Integration of epidemiology and molecular biology (partners from Spain, Germany, Belarus)

INT-Thyr aims to:
- validate 7q11 and CLIP2 biomarkers in a cohort of post-Chernobyl childhood thyroid cancer patients from Belarus
- study the dose-response relationship
- evaluate possible effect modifications of iodine deficiency, age, gender
INT-Thyr: CLIP2 typing in Belarusan PTC (AaE <19 years)

- What is the **dose-response relationship** for this biomarker in Belarusan cases?
- Which factors can lead to **variations of biomarker levels**?
INT-Thyr: CLIP2 typing in Belarussian PTC (AaE <19 years)

Achievements to date:

- Biomarker typing of 90 cases
- Identification and tracing of 113 Belarussian patients through roster of operated cases at the Belarus Repulican Centre of Thyroid Cancer (BelMAPO)
- Collection of data about settlements of residence and factors related to radiation dose and iodine deficiency through questionnaires

Work in progress:

- Individual dose reconstruction
- Analysis of dose-response relationship with CLIP2 marker
- Iodine deficiency index attribution
- Evaluation of effect modifiers
CLIP2 gene regulatory network

Reconstructed CLIP2 network: global mRNA expression data of UkrAm cases (Abend et al, 2012) – 1st neighbours

- Interaction with RGS4/BAG2/NEURL1 leads to deregulation of MAPK signalling

- KIF3C: link to “genomic/chromosomal instability“

- Validation (qRT-PCR) of all CLIP2 interactions except for GOLM1

Selmansberger et al., Oncogene. 2014, in press
CLIP2 gene regulatory network

Reconstructed CLIP2 network: global mRNA expression data of UkrAm cases (Abend et al, 2012) – 2nd neighbours

- 2nd neighbourhood consists of 218 nodes and 1304 edges
- LMO3 (associated with radiation dose in the study by Abend et al. 2012) is part of the CLIP2 interactome

Selmansberger et al., Oncogene. 2014, in press
DoReMi and EpiRadBio: Mathematical models to link epidemiology and molecular biology

Molecular biology measurements

Epi-data → Molecular biology measurements → PTC risk after exposure to IR

Talk by Ch. Kaiser - Session F
DoReMi and EpiRadBio: Mechanistic models to link epidemiology and molecular biology

Two path model of carcinogenesis for radiation-induced PTC

Molecular surrogate markers for inclusion into models
CLIP2 as surrogate for genomic instability

1st neighbours of CLIP2 suggests that CLIP2 is involved in chromosomal/genomic instability, a hallmark of cancer development

Hypothesis:

CLIP2 overexpression in PTC tissue represents a surrogate marker of genomic/chromosomal instability
CLIP2 measurements on UkrAm cases

Tumour tissue

- Biomarker classification
- UkrAm
- Sensitivity: 72.4%

Normal tissue

- Continuous

Binary (negative/positive)

- CLIP2 marker in PREVALENCE and INCIDENCE of UkrAm
- Prevalence (n=12)
- Incidence (n=47)
MAPK activation signature in normal UkrAm tissues

Hypothesis:

Active MAPK signalling in differentiated non-malignant thyroid tissue indicates early molecular changes during tumourigenesis
MAPK activation signature in normal UkrAm tissues

- Deregulated MAPK signalling is known to be involved in the majority (> 70%) of PTCs (RET/PTC, BRAF V600E)
- active MAPK induces cell proliferation which is a hallmark in cancer development
MAPK activation signature in normal UkrAm tissues

170 genes
MAPK pathway*

match

145 genes

20 top variant genes

hierarchical clustering

top 10 informative MAPK activation genes

* Wikipathways

http://www.wikipathways.org/index.php/Pathway:WP382
MAPK activation signature in normal UkrAm tissues

FOS, DUSP1, DUSP6, JUN, NR4A1, SRF, HSPA1A, GADD45A, MYC
MAPK activation score in normal UkrAm tissues

* BRAF mutation (deep sequencing)
Handing over molecular data to risk modelers

Talk by Ch. Kaiser - Session F
Summary and conclusion

- A novel approach of integrating genomic copy number and gene expression data resulted in the identification of a radiation-specific copy number gain of 7q11 and overexpression of CLIP2 (patients at young AaE).
- An independent validation of CLIP2 was achieved at genomic, transcriptomic and proteomic level.
- A standardized CLIP2 classification workflow was established.
- CLIP2 network reconstruction identified the CLIP2 interactome with functional links to genomic instability and MAPK signaling.
- CLIP2 typing in UkrAm and Genrisk-T showed a dose relationship for patients at young age at exposure (<5 years).
- DoReMi/INT-Thyr: similar CLIP2 results in Belarussian cases compared to UkrAm/Genrisk-T cases.
- EpiRadBio: Molecular measurements of CLIP2 and MAPK activation (normal and tumor tissues) for the development of risk models based on molecular/biological data.
Thank you

Research Unit Radiation Cytogenetics
H. Braselmann
C. Innerlohinger
E. Konhäuser
J. Heß
A. Michna
M. Selmansberger
K. Unger

Research Unit Analytical Pathology
U. Buchholz
A. Feuchtinger
C.-M. Pflüger
A. Walch

Institute of Radiation Protection
M. Eidemüller
J.-Ch. Kaiser
D. Güthlin
P. Jacob

Partners from GENRISK-T, EpiRadBio and DoReMi
C. Maenhaut, G. Dom, B. Jarzab, W. van Wieringen, M. van der Wiel, P. Cardis, E. Pernot, J. Grellier, M. Lushchyk, Y. Demidchik
M. Blettner

THANK YOU FOR YOUR ATTENTION!

Imperial College London
G. Thomas
U. Schötz
A. Galpine

Institute of Endocrinology and Metabolism, Kiev
T. Bogdanova
L. Zurnadzy

Bundeswehr Institute of Radiobiology
M. Abend

Radiation Epidemiology Branch, NCI
A. Brenner

EC grants
036495 (GENRISK-T)
269553 (EpiRadBio)
249689 (DoReMi)
MAPK activation signature in normal UkrAm tissues

http://www.wikipathways.org/index.php/Pathway:WP382
Dose dependency of CLIP2 marker

Logistic regression analysis

- CLIP2 negative
- CLIP2 positive

Probability of positive CLIP2 overexpression

- AaE < 5 years
- AaE ≥ 5 years

95% confidence intervals